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The 1,4-dianions of C(c),N-carboalkoxyhydrazones and C(c),N-phenylhydrazones were prepared in an ex-
cess of lithium diisopropylamide (LDA). These dilithiated intermediates resulted from metalation of substi-
tuted hydrazones of several all-aliphatic cyclic ketones, aliphatic-aromatic cyclic ketones phenylacetalde-
hyde, and several substituted propiophenones or acetophenones. The esters utilized for Claisen-type conden-
sations of these dianion intermediates included methyl salicylate, methyl p-hydroxybenzoate, methyl nicoti-
nate and related materials. The condensations were followed by acid-cyclizations to give a variety of N-phe-
nylpyrazoles and N-carboalkoxypyrazoles, most of which are new.
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Introduction.

One of our recent major research endeavors has dealt
with the preparation and reactions of polylithiated inter-
mediates such as substituted C(a),/N-dilithiohydrazones
{1-8] (metalation - condensation - cyclization). These preli-
minary [1,2] and follow up investigations [3-7] have result-
ed in new preparations of pyrazoles utilizing n-butyllithi-
um for metalation of entry compounds (e.g., C(a)-phenyl-
hydrazones) [3], the improved syntheses of these 1,4-diani-
ons and products utilizing excess lithium diisopropyl-
amide (LDA) for metalation instead [4], and the condensa-
tion of these reactive polylithiated intermediates with aro-
matic (and salicylate) esters, acid chlorides, and other elec-
trophilic reagents [5-8]. In many instances the lithiated
condensation intermediates could be neutralized and cy-
clodehydrated to unsymmetrical pyrazoles (usually 3,5-di-
substituted) of unequivocal structure. Other well-docu-
mented preparative methods, such as the condensation of
unsymmetrical B-diketones with hydrazides, usually af-
fords mixtures of isomers, and often requires additional
separation techniques [9-12].

There is current interest in pyrazoles because of their
potential for biological activity [13]. Traditional and new
synthetic methods are used to prepare new materials for
medicinal [14], agricultural [15], and other studies. Usual-
ly, most unsymmetrical pyrazoles that are targeted, pre-
pared and reported by us are new [16].

This paper will deal with the following situations not
previously explored by us in former strong-base investiga-
tions involving polylithiated hydrazone intermediates: (1)
utilization of more all-aliphatic ketones for preparation of
entry compounds, substituted hydrazones; (2) develop-
ment of syntheses of N-carboalkoxyhydrazones beyond the
preliminary report [2]; (3) more condensations of dianions
with methyl lithium p-hydroxybenzoate; (4) the prepara-
tion and Claisen-type condensations of dilithiated phenyl-

acetaldehyde hydrazones; and (5) reporting additional ex-
amples. of the preparation of substituted pyrazoles con-
taining another heterocyclic pendant group (e.g., 3-pyri-

dyl).
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Precyclization Intermediate,
(Table, footnotes, [f-h])

R, = COOCH, or COOC,Hg, 1-24; R, = CgHg, 25-40
Rz = H, 19-25; R, other = substituted aromatic, heteroaromatic
o adiphatic substtuent
R4 = H 1-5 and 26; Ry = CH;, 6-8; Ry, other = substituited aromatic
or aiphatic substtuent
R = substituted aromatic or heteroaromatic substituent, 1-40

N-Carboalkoxypyrazoles (R, = COOCH, or COOC,H,).

N-Carboalkoxypyrazoles 1-24 (Table) were prepared in
11-85% yield from the condensation-cyclization of C(c)-di-
lithiocarboalkoxyhydrazones and a variety of esters. They
were characterized by absorption spectra with support
from combustion analyses (for C,H,N-Table). Proton mag-
netic resonance for pyrazoles 1-5 (R, = H) displayed a
C,-H absorption between & 6.63-7.2 ppm [17], and pyra-
zoles 6-8 (R, = CH,), which were prepared from propio-
phenone carboalkoxyhydrazones, displayed a C,-CH, ab-
sorption between & 2.04-2.15 ppm. Pyrazoles 9-11 (R, and
R, = (-CH,-),, n = 6 or 10) resulted from all-aliphatic ke-

tone carboalkoxyhydrazones of cyclooctanone or cyclodo-
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decanone, and pyrazoles 12-18 resulted from aliphatic-
aromatic ketone carboalkoxyhydrazones - (e.g. from a-te-
tralone) (Table). Interestingly, precyclization intermedi-
ates for 14, 16, or 17, a-acylcarboalkocyhydrazones (Table
and Scheme - footnotes [f-h]), could be isolated. They were
independently cyclodehydrated to the desired pyrazole
utilizing tetrahydrofuran solvent and methanesulfonic ac-

id catalyst (this cyclization). It was usually more desirable
to avoid isolation of these intermediates, and this could be
accomplished by adding additional solvent-grade tetrahy-
drofuran to the newly acidified (with hydrochloric acid-re-
gular cyclization), two-phased reaction mixture. This was
especially important if considerable solid material resulted
upon addition of the hydrochloric acid to quench the mul-

N-Carboalkoxypyrazoles and N-Phenylpyrazoles

Compound R, R, R, R, Empirical
No. Formula
1 COOCH, 4FCH, H 4H,NCH, C,/H,;FN,0,
2 COOCH, 4-CICH, H 2-CIC.H, C,.H,,CL,N,0,
3 COOCH, CH, H 4-H,NCH, C,.H,,N,0,
4 COOCH,  3-pyridyl H 4-HOCH, C,H,,N,0,
5 COOCH,  3-pyridyl H 4-CIC.H, C,H,,CIN,0,
6 COOCH, 4-BrCH, CH, 4CH,0CH, C,H,,BrN,0,
7 COOCH, 4CH,CH, CH, 4-HOCH, C,,H,,N,O,
8 COOCH, 4CH,OCH, CH, 4-CICH, C,,H,,CIN,0,
9 COOCH, — (CH,),, — 4-HOC.H, C,,H,N,0,
10 COOCH, — (CH,), — 4-CIC H, C,,H,,CIN,0,
1 COOCH, — (CHy), — 4-HOCH, C,.H,,N,0,
12 COOCH, 1,2,3,4-tetrahydro-  4-H,NC,H, C,,H;N,0,
1,2-naphthy!
13 COOCH, 1,2,3,4tetrahydro-  3-CICH, C,H,,CIN,O,
1,2-naphthyl
14 COOC,H, 1,2,3,4-tetrahydro-  4-CIC,H,
1,2-naphthyl
15 COOCH, 5,7-dimethyl- 4H,NCH, C,H,N,0,
1,2,3,4-tetrahydro-
1,2-naphthyl
16 COOC,H, 1,2,34-tetrahydro-  3-CICH,
1,2-naphthyl
17 COOCH, 1,2,3,4-tetrahydro-  4-CICH,
1,2-naphthyl
18 COOCH, 6,7,8,9-tetrahydro-  3,4,5-tri- C,,H, N0,
5,6-5H-benzacyclo- methoxyphenyl
heptenyl
19 COOCH, H C.H, 3,4,5-tri- C,,H,,N,0,
methoxyphenyl
20 COOC,H, H CH, 4-CICH, C,H,;CIN,0,

R
R’JL N

”~ N

Yield Mp
(%) (°C)

11 [a] 137-139

46 [b} 150-153 5881 348  8.07

4 [c] 126-127 69.61 515 14.33

67 [c] 145 fi] 6508 444 1423
85[a] 151153 6125 3.86 13.39
33[(b) 131133 5688 427 698

26 [a) 206-208 70.79 565  8.69

32 [a) 127-128 63.96 4.80 7.85
31 [a) 194-197 7076 792 185
31 [c] 122-124 64.05 6.01 879
44 [c] 180-183 6798 6.71  9.33

42 [c} 195-197 7146 537 1316

51[c] 182-183  67.36 4.46 827
CyH,,CIN,0, [f] 83[a] 173175  68.09 486 794

27[c] 215216 7260 609 1210

C,H,,CIN,O, [g] 42[a] 132134 6809 486 7.94

CLH,CIN,0, [h] 54[d] 189-190  67.36 446 827
65[a] 159-161  67.63 592 686
57 [a] 183

41 [a] 150-152 66.16 4.63  8.57

Ry

Elemental Analysis
Caled./Found
c H N

NMR (6 ppm) (solvent) IR (cm™*) (Nujol)

65.59 4.53 13.50
65.81 4.80 13.28

(deuteriochloroform/trifluoroacetic acid): 3.80 (s, -NH,), 3.98
(s, -OCH,), 6.76 (s, C,-H), 7.45-8.18 (m, ArH) / 1740 (C=0),
3360 and 3450 (NH,)

(deuteriochloroform): 4.00 (s, -OCH,), 6.63 (s, C,-H), and

58.79 3.64 792  7.24-7.51 (m, ArH) / 1695 (C=0)

(deuteriochloroform/trifluoroacetic acid): 3.90-4.00 (s,
ArNH,), 4.00 (s, -OCH,), 6,70 (s, C,-H), 6.80-8.10 (m, Ar-H) /
1750 (C=0), 3360 and 3500 (NH,)

69.55 520 14.15

(deuteriochloroform/trifluoroacetic acid): 4.00 (s, -OCH,),
6.85-9.50 (m, C,-H and Ar-H) / 1750 and 1770 (C=0)

(DMSO-d,/trifluoroacetic acid): 4.00 (s, -OCH,), 7.16-7.35
(s, C,-H and ArH), 7.36-9.65 (m, Ar-H) / 1775 (C=0)

(deuteriochloroform): 2.05 (s, C,-CH,), 3.80-4.13 (s-broad,
ArOCH, and -OCH,), and 6.938.01 (m, ArH) / 1765 (C=0)

64.79 440 1396

61.26 385 13.38

56.95 436 696

(deuteriochloroformitrifluoroacetic acid): 2.15 (s, C,-CH,),
2.45 (s, ArCH,), 4.03 (s, -OCH,), 7.10-7.59 (m, ArH) / 1760
(C=0)

(deuteriochloroform): 2.04 (s, C,-CH,), 3.90 (s, -OCH,), 3.99
(s, -OCH,), 7.00-7.88 (m, ArH) / 1740 (C=0)

70.56 5.73  8.64

63.74 485 7.71

(deuteriochloroform/trifluoroacetic acid): 1.36 (s-broad,

70.74 816 815  (CH,),) 3.93 (s, -OCH,), 7.17-7.34 (m, ArH) / 1770 (C=0)

(deuteriochloroform/trifluoroacetic acid): 1.54 (s-broad,

6395 6.12 868  (CH,),), 3.87 (s, -OCH,), 7.21-7.60 (m, ArH) / 1760 (C=0)

{deuteriochloroform/trifluoroacetic acid). 1.60 {s-broad,

67.90 698 9.24  (.CH,)), 4.00 (s, -OCH,), 7.00-7.48 (m, ArH) / 1745 (C=0)

(deuteriochloroform/trifluoroacetic acid): 2.70-3.30 {m,
-CH,CH,-), 4.00 (-OCH,), 7.17-8.55 (m, ArH and NH,)/ 1760
(C=0), 3390 and 3490 (NH,) 1)

(deuteriochloroform): 2.40-2.70 (m, -CH,CH,-), 3.80 (s,
-OCH,), and 7.0-7.30 (m, ArH)/ 1735 (C=0) [1]

(deuteriochloroform}): 1.30 (t, -CH,), 2.8 (s-broad, -CH,CH,),
440 (g, -OCH,), and 7.20-7.50 (m, ArH) / 1760 (C=0) [1]

71.61 5.39 13.00

6729 460 799

6830 5.02 7.94

(deuteriochloroform/trifluoroacetic acid): 2.30 (s, Ar-CH,),
2.80 (s-broad, -CH,CH,-), 4.00 (s, -OCH,), 7.30-7.85 (m,
ArH) / 1760 (C=0), 3390 and 3475 (NH,) [m]

{deuteriochloroform): 1.30 (t, -CH,), 2.58-3.28 (m, -CH,CH,),
4.42 (g, OCH,), and 7.30-7.72 (m, ArH) / 1755 (C=0) [1]

72.54 6.29 11.92

68.20 5.03 809

{deuteriochloroform/trifluoroacetic acid) 1.98-3.01 (m,
-CH,CH,;), 3.95 (s, -OCH,), and 7.07-7.43 (1, Ar-H) / 1750
€=0)(1]

{(deuteriochloroform): 2.10-3.00 (m, (-CH,-),), 3.90 (s, OCH,),
4.0 (s, -OCH,), 6.75 (s, ArH), 7.29-7.77 (m, ArH} / 1760
(C=0)[n]

6740 454 810

67.50 6.00 6.74

65.96 5.80 732
6597 564 714

(deuteriochloroform/trifluoroacetic acid): 1.30 (1, -CH,),
3.70-4.00 {m, OCH,), 4.25 (g, -OCH,"), 6.60-7.50 (m, Ar H)
and 8.35 (s, C,-H) / 1760 (C=0)

(deuteriochloroform): 1.29 (t, -CH;), 4.40 (q, -OCH,-),

6622 4.78 830  7.27-7.51 (m, ArH), and 8.01 (s, C,-H) / 1780 (C=0)
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Table (continued)

Elemental Analysis

Compound R, R, R, R, Empirical Yield Mp Caled./Found NMR (& ppm) (solvent)/ IR (em™') (Nujol)
No. Formula (%) (°C) C H N
21 COOC,H, H CH, 4CH,0CH, C,H,,N,0, 62 [a) 164-166 70.79 563 869  (deuteriochloroform): 1.30 (t, -CH,), 3.87 (s, ArOCH,), 4.38
7098 590 844 (g, -OCH,), 6.90-7.37 (m, ArH), and 8.03 (s, C,-H) / 1750
(C=0)
22 COOCH, H CH, 4-CIC H, C,,H,,CIN,0, 33 [c] 153-154 6528 4.19 896  (deuteriochloroform/trifluoroacetic acid): 4.00 (s, -OCH,) and
6538 4.50 871 7.20-7.60 (m, Ar-H), and 8.30 (s, C,-H), / 1760 (C=0)
23 COOCH, H CHy 3-CICH, C,,H,CIN,0, 48 [a] 125-127 65.29 4.19 896  (deuteriochloroform/triflucroacetic acid): 3.90 (s, -OCH,),
6545 4.44 878  7.24-7.45 (m, ArH), 8.03 (s, C,-H) / 1760 (C=0)
24 COOCH, H CH; 4-HOCH, C,.H, N0, 45 [c] 248-250 66.24 555 858  (deuteriochioroformitrifluoroacetic acid): 3.87 (s, -OCH,),
-CH, 6599 579 825 6.72-6.90 (m, ArH), 8.33 (s, C,-H) / 1780 (C=0)
25 CHy H CH, 4-CIC H, C,,H,CIN, 72 [d] 194-197 [j} 8.47 (deuteriochloroform): 6.90-7.20 (m, ArH) and 8.00 (s, C,-H)
8.17
26 CH, 4-BrCH, H 4-HOCH, C, H,;BrN,0 35 [a] 246-249 64.47 3.86 7.16  (deuteriochloroform/triflucroacetic acid): 6.95-7.85 (m, ArH
64.32 4.09 7.07 and C,-H)
27 C.H; — (CHp),, — 2-HOCH, C,HyN,O 27 [a] 180-182 80.17 8.07 748  (deuteriochloroform/triflucroacetic acid): 1.43 (s-broad,
79.87 793 744  (CH,),), and 6.87-7.44 (m, ArH) [n]
28 CH, — (CH,),, — 4-HOCH, C,,H,,N,0 67 (a) 210-212 80.17 8.07 7.48  (deuteriochloroform/triflucroacetic acid): 1.44 (s-broad,
80.08 818 733  (CH,),), and 6.78-7.84 (m, ArH)
29 CH, — (CH,),, — 3,4,5-ri- C,; Hy N0, 33 [a] 105-107 7497 809 624 (deuteriochloroform): 1.27 (s, (CH,),,), 3.93 (s,
methoxyphenyl 7496 8.34 6.02 ArOCH,), and 6.85-7.45 (m, ArH)
30 CH, — (CH,), — 4-HOCH, C,H, N0 85 [d] 250-252 7824 5.84 10.14  (deuteriochloroform/triflucroacetic acid): 2.90 (s-broad,
7835 595 998  (CH,),), and 6.80-7.80 (m, Ar-H)
31 C.H, — (CH), — 4-HOCH, C,,H,N,0 77 [d] 257-258 78.59 6.25 9.65 (deuteriochloroformitrifluoroacetic acid): 2.20-3.00 (m,
78.74 6.18 952  (CH,),) and 6.70-7.80 (m, Ar-H)
32 C.H; — (CH,), — 2-HOCH, C,,H,N,0 74 [d] 221-222 7859 6.25 9.65  (deuteriochloroform/trifluoroacetic acid): 1.90 (s-broad,
7833 637 951  {CH,),) and 6.80-7.60 (m, Ar-H)
a3 CH; CH, CH; 4HOCH, Cy,Hy,N,O 65 [d) 262-263 8348 519 721 (deuteriochloroformitrifiuoroacetic acid): 7.20-7.77 (m, ArH)
8328 529 726
34 CH; CH,CH, CH, 2-HOCH, C,H,,N,0 32 [c] 166-168 83.56 5.51 6.96  (deuteriochloroform/triflucroacetic acid): 4.30 (s, -CH,-) and
83.34 580 6.67  6.70-7.45 (m, Ar-H)
35 CH, CH,CH, C.H, 4-HOC H, C,,H,,N.O- 64 [a] 237239 80.33 629 625  (deuteriochloroform/triflucroacetic acid: 1.22 (t, CH,), 3.72
C,H,0H 80.38 6.14 623 (g, -CH,0-), 4.25 (s, -CH,") and 6.70-7.60 (m, ArH)
36 CH; 4-BrCH, H 2-HOCH, C,,H,;BrN,0 27 [a] 191-193 6446 386 7.16  (deuteriochloroform/trifluoroacetic acid): 6.78-7.69 (m, C,-H
64.53 4.03 7.29 and ArH)
37 CH, 2,3-dihydro-1,2-1H- 4-HOCH, C,.H N0 53 [e] 287-288 8146 497 865  (deuteriochloroform/trifluoroacetic acid): 3.98 (s, -CH,-) and
indenyl 81.63 5.11 8.45 6.70-8.03 (m, ArH) [o]
38 CH; 1,2,3 4-tetrahydro-  4HOC,H, C,,H,,N,0 62 [d] 215-219 81.63 536 828  (deuteriochloroform/trifluoroacetic acid): 2.87-3.33 (m,
1,2-naphthyl 81.70 556 824  -CH,CH,), and 6.87-7.90 (m, ArH) [1]
39 CH, 1,2,34-tetrahydro-  3-pyridyl C, H N, 10 [d] 158-161 7260 6.09 12.10 (deuteriochloroform): 2.63-3.00 {m, -CH,CH,-) and 7.10-9.00
1,2-naphthyl 7254 629 1192 (m, ArH) [1]
40 CH, CH, C.H, 3-pyridyl CH Ny 54 [d] 232-234 83.62 513 11.25 (deuteriochloroform/triflucroacetic acid): 7.10-9.20 (m, ArH)

83.67 5.18 11.02

{a] Recrystallized from ethanol. [b] Recrystallized from methanol/water. [c] Recrystallized from methanol. [d] Recrystallized from ethanol/benzene. [e] Recrystallized from xylene/dimethylforma-
mide. [f] Precyclization intermediate, acylcarboethoxyhydrazone for 14, (58%) mp 203-205° (ethanol/benzene). Anal. Calcd. for C,,H,,CIN,0;: C, 64.78; H, 5.16; N, 7.55. Found: C, 64.90; H, 5.42; N,

7.40. [g] Precyclization intermediate, acylcarboethoxyhydrazone, for 16 (39%), mp 174-176° (ethanol). Anal. Caled. for C,H ,CIN,0;: C, 64.78; H, 5.16; N, 7.55. Found: C, 65.09; H, 5.23; N, 7.52.
[h] Precyclization intermediate, acylcarbomethoxyhydrazone, for 17 (49%), mp 193-195° (ethanol). 4nal. Caled. for C,H,,CIN,0;: C, 63.96; H, 4.81; N, 7.85. Found: C, 63.61; H, 5.02; N, 7.79.
fi] Sublimes at this temperature. [j] Lit. mp 194.9-195.3°, see reference [19¢]. (k] Infrared spectra for compounds 25-40 mainly distinguished products from phenylhydrazones. 2-Hydroxyphenyl and
4-hydroxyphenyl absorptions for other pyrazoles (where applicable) were sometimes ambiguous, but were usually displayed ca. 3100-3400 cm™. Hydroxyphenyl and other absorptions were displayed ca.

1410-1260 cm™*. [1] }-Tetralone was used to make the entry hydrazone for this product. [m] 5,7-Dimethyl-1-tetralone was used to make the entry hydrazone for this product. [n] Benzo-1-suberone
was used to make the entry hydrazone for this product. [o] 1-Indanone was used to make the entry hydrazone for this product.

tiple anion condensation intermediates (see experimental).
Pyrazoles 19-24 (R, = H and R, = C H;) resulted from di-
lithiated carboalkoxyhydrazone derivatives of phenylacet-
aldehyde, and their proton nmr specira displayed a C;-H
absorption from 6 8.00 -8.35 ppm [18].

N-Phenylpyrazoles (R, = CH,).

N-Phenylpyrazoles 25-40 were prepared in 10-85%
yield from the condensations of C(a)-dilithiophenylhydra-

zones with a variety of aromatic or heteroaromatic esters.
A noteworthy feature of these pyrazole preparations in-
volved utilizing phenylhydrazone entry compounds pre-
pared from a variety of starting materials such as phenyl-
acetaldehyde (for pyrazole 23), all-aliphatic cyclic ketones
(for pyrazoles 27-32), a-indanone (for fused-ring pyrazole
37), and o-tetralone (for fused-ring pyrazoles 38 and 39).
These C(c)-dianions were condensed with methyl 4-amino-
benzoate, methyl 4-hydroxybenzoate (probably as a
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lithiated phenoxide), methyl nicotinate, or other esters, to
give intermediates that were also acid-cyclized to pyra-
zoles (see Table). The characterization of these new mate-
rials utilized absorption spectra, with support from com-
bustion analyses (see Table).

Discussion.

N-Carboalkoxypyrazoles 1-24 resulted from cyclodehy-
dration of acyl-carboalkoxyhydrazone precyclization inter-
mediates without detectable and/or extensive hydrolysis of
the carboalkoxyhydrazones (to give a B-diketone) or N-Car-
boalkoxypyrazoles (to give the N-H pyrazole after decar-
boxylation of the N-COOH pendant group). Condensation-
cyclization of 1,4-dianions with lithiated salicylates or
p-hydroxybenzoates and p-aminobenzoates (electrophilic-
nucleophilic reagents) proceeded reasonably well. Conden-
sation-cyclization of the hydrazone 1,4-dianions gave pro-
ducts that would be more difficult to prepare by other
methods [19].

The strong features of these syntheses are as follows: the
starting materials can be readily prepared by an easy, one-
step procedure utilizing a variety of available C(a)-alde-
hydes and C(a)-ketones; the heterocyclic products are of
unequivocal structure since all of the atoms making up the
five-membered ring are in place prior to the cyclization
step; purification of products usually involves straight-for-
ward recrystallization from routine solvents (chromatogra-
phic separations not needed); and someone not very fami-
liar with strong-base synthesis procedures can be success-
ful with the overall preparations.

EXPERIMENTAL

Tetrahydrofuran (THF) was distilled from sodium (benzophenone) im-
mediately before use. Phenylhydrazones [20] and carboalkoxyhydrazones
[21] were prepared by the condensation of equimolar amounts of alde-
hyde or ketone and substituted hydrazine (phenyl- or carboalkoxy-), and
they were dried in a vaccum desiccator immediately before use [22]. Nuc-
lear magnetic resonance spectra were obtained with a Varian Associates
EM 360L NMR Spectrometer, and absorptions are reported in § ppm
downfield from an internal tetramethylsilane (TMS) standard. Infrared
spectra were obtained with a Perkin-Elmer 710 B Spectrometer. Melting
points were obtained in a Mel-Temp melting point apparatus in open
capillary tubes and are uncorrected. Combustion analyses (C, H, N) were
performed by Robertson’s Microanalytical Laboratory, 73 West End
Avenue, Florham Park, NJ 07932. n-Butyllithium (1.6 M/hexane) was pur-
chased from the Lithium Corporation of America, Bessemer City, NC
28016.

1-Phenylpyrazoles or 1-Carboalkoxypyrazoles.

A 0.033-mole sample (0.044-mole sample for 4, 7, 9, 11, 24, 26-28,
30-38) of n-butyllithium was added to a round-bottomed flask with a syr-
inge (dry nitrogen atmosphere). After cooling the flask in an ice-bath, a
0.033-mole sample (0.044 mole sample for 4, 7,9, 11, 24, 26-28, 30-38) of
diisopropylamine dissolved in 30 ml of dry tetrahydrofuran (THF) was
added at a fast dropwise rate to the stirred n-butyllithium. The resulting
lithium diisopropylamide (LDA) was stirred at 0° for an additional 20-30
minutes before adding a 0.010-mole sample of hydrazone dissolved in
40-50 ml of dry THF [23] during 5 minutes. The metalation time at 0°

was 60 minutes. A 0.011-mole sample of ester dissolved in 100 ml [24] of
dry THF was added during 5 minutes, and the condensation was allowed
to proceed with stirring at 0° for an additional 1.5-2 hours. This was fol-
lowed by the rapid addition of 100 ml of 3NV hydrochloric acid, heating
the well-stirred, two-phase mixture under reflux for 60 minutes, and cool-
ing the mixture by pouring it into a large flask (1 or 2 liter) containing
ice. The mixture was neutralized with excess solid sodium bicarbonate.
At this point, it was usually advantageous to add solvent-grade ether or
THF (ca. 100 ml). The aqueous and organic layers were separated, and
the aqueous layer was extracted with three, 75-ml portions of ethyl ether
[25]. The ether extracts and organic phase were combined, dried (magne-
sium sulfate), filtered, and concentrated (roto-evaporator). The oil or so-
lid that resulted was crystallized and recrystallized from solvent or sol-
vents indicated in the footnote of the Table.

1-Carboalkoxypyrazoles from Acyl-Carboalkoxyhydrazones.

A 1.0 g-sample of acyl-carboalkoxyhydrazone (see footnotes [f, g, and h]
Table) was dissolved in 60 ml of solvent grade THF and added to 10 ml of
3N methanesulfonic acid. The mixture was stirred and heated under re-
flux for 1 hour. After cooling, the mixture was extracted with ether, and
organic extracts were combined, dried (magnesium sulfate), and concen-
trated (roto-evaporator). The oil or solid material that resulted was taken
up in ethanol (ce. 10 ml) (footnote f and g - Table) or methanol (ca. 10 ml)
(footnote h-Table) and crystallization occurred upon cooling. The yields
of 1-carboalkoxypyrazoles 14, 16 and 17 were 60-83%.

Isolation of these noncyclized intermediates could be avoided by addi-
tion of excess solvent grade THF (ca. 100 ml) to those reactions, which
after addition of the 3V hydrochloric acid (quenching of condensation in-
termediates), contained solid residue. Good stirring of the heated two-
phase mixture was necessary to complete cyclization.
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